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Fig. 1. HOIGaze is a novel method for estimating eye gaze during hand-object interactions in extended reality. The left figure shows an example sequence of
daily HOI activity. HOIGaze uses a novel hierarchical framework that first recognises attended hand from head orientations, left and right hand gestures and
then uses a gaze estimator that is trained with an eye-head coordination loss to estimate eye gaze from head orientations, attended hand, and scene objects.

We present HOIGaze — a novel learning-based approach for gaze estimation
during hand-object interactions (HOI) in extended reality (XR). HOIGaze
addresses the challenging HOI setting by building on one key insight: Eye,
hand, and head movements are closely coordinated during HOIs and this
coordination can be exploited to identify samples that are most useful for
gaze estimator training — as such, effectively denoising the training data. This
denoising approach is in stark contrast to previous gaze estimation methods
that treated all training samples as equal. Specifically, we propose: 1) a novel
hierarchical framework that first recognises the hand currently visually
attended to and then estimates gaze direction based on the attended hand;
2) a new gaze estimator that uses cross-modal Transformers to fuse head
and hand-object features extracted using a convolutional neural network
and a spatio-temporal graph convolutional network; and 3) a novel eye-head
coordination loss that upgrades training samples belonging to the coordinated
eye-head movements. We evaluate HOIGaze on the HOT3D and Aria digital
twin (ADT) datasets and show that it significantly outperforms state-of-the-
art methods, achieving an average improvement of 15.6% on HOT3D and 6.0%
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on ADT in mean angular error. To demonstrate the potential of our method,
we further report significant performance improvements for the sample
downstream task of eye-based activity recognition on ADT. Taken together,
our results underline the significant information content available in eye-
hand-head coordination and, as such, open up an exciting new direction for
learning-based gaze estimation.

CCS Concepts: « Human-centred computing — Interaction techniques;
« Computing methodologies — Neural networks.

Additional Key Words and Phrases: Gaze estimation, eye-hand-head coordi-
nation, hand-object interaction, deep learning, extended reality

ACM Reference Format:

Zhiming Hu, Daniel Haeufle, Syn Schmitt, and Andreas Bulling. 2025. HOIGaze:
Gaze Estimation During Hand-Object Interactions in Extended Reality Ex-
ploiting Eye-Hand-Head Coordination. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Conference Papers (SSGGRAPH
Conference Papers '25), August 10—14, 2025, Vancouver, BC, Canada. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3721238.3730692

1 INTRODUCTION

With the growing popularity of extended reality (XR), analysing
and understanding human behaviour in XR environments has be-
come an important research topic. Human eye gaze estimation in
particular has significant relevance for a number of XR applications
including 1) gaze-based interaction that employs eye movements to
select or interact with 3D objects [Sidenmark and Gellersen 2019b];
2) gaze-contingent rendering that maintains high rendering qual-
ity in gaze central region while reducing the fidelity in peripheral
region to improve rendering efficiency [Patney et al. 2016]; 3) gaze-
based intention estimation that uses eye gaze features to predict
interaction intentions [Belardinelli et al. 2022; Sun et al. 2018]; or 4)
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eye-based activity recognition that recognises user activities based
on their eye movements [Hu et al. 2022; Jiao et al. 2024b].

Estimating human eye gaze in XR environments is challenging be-
cause human gaze behaviour is influenced by both bottom-up scene
content and various top-down factors, e.g. tasks that a user desires
to finish [Hu et al. 2021, 2022; Jiao et al. 2023]. Prior works on gaze
estimation and analysis in XR typically focused on free-viewing con-
ditions in which no specific task is assigned to users [Hu et al. 2019;
Sitzmann et al. 2018] or non-interactive scenarios where users can-
not naturally interact with the environment [Hadnett-Hunter et al.
2019; Hu et al. 2022]. However, free-viewing and non-interactive
tasks have limited relevance for practical XR applications, in which
users typically desire to naturally interact with the environment to
perform a particular task. Gaze estimation in the more practically
relevant but also significantly more challenging scenarios that in-
volve hand-object interactions (HOIs) has been largely neglected so
far.

To fill this gap, we present HOIGaze — the first gaze estimation
method specifically geared to hand-object interactions in XR. Our
key insight is that eye, hand, and head movements are strongly coor-
dinated during HOISs and this coordination can be used to effectively
denoise the training samples to improve gaze estimation perfor-
mance. Specifically, we propose a novel hierarchical framework that
first recognises the attended hand — the hand that is closest to eye
gaze — by comparing the angular distance between gaze direction
and a vector pointing from the eye to both hand centres. In a second
step, the method estimates eye gaze based on the attended hand (see
Figure 1). We further present a new gaze estimator that combines a
convolutional neural network (CNN) to extract head features with
a spatio-temporal graph convolutional network (GCN) to extract
features from the attended hand gestures and scene object positions.
The estimation further uses two cross-modal Transformers to fuse
the head and hand-object features to estimate eye gaze. Finally, we
introduce a novel eye-head coordination loss that upgrades training
samples belonging to coordinated eye-head movements to improve
the generalisation ability of the gaze estimator. We extensively evalu-
ate our method on the HOT3D dataset [Banerjee et al. 2024] for HOIs
as well as on the Aria digital twin (ADT) dataset [Pan et al. 2023]
that contains a mixture of free-viewing, non-interactive, and HOI
scenarios. Experimental results show that HOIGaze outperforms the
state of the art by a large margin, achieving an average improvement
of 15.6% on HOT3D and 6.0% on ADT in mean angular error. Com-
plementing these evaluations, we also evaluate the effectiveness of
our method for the sample downstream task of eye-based activity
recognition on ADT and demonstrate that using our method results
in significant performance improvements. The full source code and
trained models are available at https://zhiminghu.net/hu25_hoigaze.

The specific contributions of our work are three-fold:

e We propose HOIGaze — a novel method for estimating eye
gaze during HOIs in extended reality that exploits the close
coordination between eye, hand, and head movements. It
combines a novel hierarchical framework, a new gaze esti-
mator that uses cross-modal Transformers to fuse the head
and hand-object features extracted using a CNN and a spatio-
temporal GCN, and a novel eye-head coordination loss.
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e We report extensive experiments on two public datasets for
both HOI and mixed settings and demonstrate significant per-
formance improvements over several state-of-the-art meth-
ods.

o We show the effectiveness of our method for the sample down-
stream task of eye-based activity recognition, also showing
significant performance improvements.

2 RELATED WORK
2.1 Eye Gaze Estimation

Human eye gaze estimation or visual attention prediction has been
a popular topic in the area of vision research for decades. Typical
gaze estimation methods can be classified into bottom-up methods
that focus on low-level visual scene content [Itti et al. 1998; Wang
et al. 2023] or top-down approaches that take high-level context into
consideration [Koulieris et al. 2016; Wang et al. 2024]. For example,
Itti et al. extracted multiscale colour, intensity, and orientation fea-
tures from 2D images to predict saliency map (density map of gaze
distribution) [Itti et al. 1998]. Wang et al. predicted saliency map of
information visualisations using both the visualisation content and
the questions assigned to the viewers [Wang et al. 2024].

Recently, with the increasing use of extended reality, a lot of
efforts have been devoted to analysing and estimating human eye
gaze in XR environments. Some researchers focused on free-viewing
settings where no specific task is assigned to the viewers [Jiao
et al. 2024a; Sitzmann et al. 2018]. For example, Sitzmann et al. col-
lected users’ free-viewing eye gaze data on 360-degree images and
adapted existing saliency predictors to predict saliency maps of
360-degree images [Sitzmann et al. 2018]. Hu et al. recorded users’
eye movements during freely exploring static or dynamic virtual
environments for developing eye gaze estimation models [Hu et al.
2020, 2019]. Other researchers devoted to analysing eye gaze in non-
interactive scenarios where users cannot naturally interact with
the environment. Specifically, Hadnett-Hunter et al. explored the
effect of three tasks on visual attention in desktop monitor-based
virtual environments [Hadnett-Hunter et al. 2019]. Hu et al. anal-
ysed the differences of eye gaze patterns under four different visual
tasks during viewing 360-degree videos [Hu et al. 2022]. However,
free-viewing or non-interactive settings have limited relevance for
practical XR applications. In stark contrast, in this work we in-
vestigate gaze estimation in the more challenging but also more
practically relevant hand-object interaction scenarios.

2.2 Eye-Hand-Head Coordination

Analysing and understanding the coordination of human eye, hand,
and head movements is a significant topic in the areas of cogni-
tive science and human-centred computing. Stahl [Stahl 1999] and
Sidenmark et al. [Sidenmark and Gellersen 2019a] both found that
eye gaze is coordinated with head movements during the gaze shift
process. Hu et al. revealed that human eye movements in virtual
environments have strong correlations with their head movements
in both free-viewing [Hu et al. 2020, 2019] and task-oriented sce-
narios [Hu et al. 2021, 2022]. Kothari et al. observed coordinated


https://zhiminghu.net/hu25_hoigaze

HOIGaze: Gaze Estimation During Hand-Object Interactions in Extended Reality Exploiting Eye-Hand-Head Coordination « 3

patterns of human eye and head movements in real-world daily ac-
tivities [Kothari et al. 2020]. Hu et al. learned generalisable joint rep-
resentations of hand trajectories and head orientations in extended
reality [Hu et al. 2024c]. Belardinelli et al. observed the coordinated
patterns of human eye gaze and hand trajectories during daily pick
and place activities in virtual environments [Belardinelli et al. 2022].
Hu et al. revealed the correlation between eye gaze direction and
wrist movements in various daily activities [Hu et al. 2024a]. In stark
contrast with prior works, we are the first to exploit eye-hand-head
coordination to effectively denoise training samples to improve gaze
estimation performance.

2.3 Hand-Object Interaction

Hand-object interaction is an important interaction paradigm in
people’s daily life and has been studied by many researchers. Damen
et al. employed egocentric images in various HOI scenarios to recog-
nise or anticipate user activities [Damen et al. 2022] while Zhang
et al. used egocentric images with per-pixel segmentation labels
of hands and objects for activity recognition [Zhang et al. 2022b].
Shi et al. took temporal inter-dependencies between HOI actions
into consideration to generate procedure actions in instructional
videos [Shi et al. 2025]. Liu et al. explored action recognition, mo-
tion forecasting, and cooperative grasp synthesis during bimanual
hand-object manipulation process [Liu et al. 2024]. Zhan et al. inves-
tigated hand mesh reconstruction, task-aware motion fulfillment,
and complex task completion during complex HOI activities [Zhan
et al. 2024]. Despite plenty of research on HOISs, eye gaze estimation
during HOI activities has been neglected so far. To fill this gap, in
this work we explore gaze estimation under HOI scenarios.

3 METHOD
3.1 Method Design

Problem Formulation. We define gaze estimation during hand-
object interactions in extended reality as the task of generating
a sequence of eye gaze directions G = {gi}iT:1 e R¥*T where
gi is a 3D unit vector and T is the sequence length, from hand
gestures, scene objects, and head movements. To enhance hand
gestures with more context, we represent hand gestures using the
3D positions of all the hand joints as well as the head and wrist
positions. Specifically, the left and right hand gestures are repre-
sented as LH = {he;, lw;, rw;, lhl-}l.T:l € R3X(N+3)XT gnd RH =
{he;, lwi,rw,-,rh,-}l.T:1 € RI*(N+3)XT respectively, where he;, lw;,
and rw; are the 3D positions of the head, left and right wrists,
Ih; € RN and rh; € RN refer to the 3D positions of the
left and right hands and N is the number of hand joints. We de-
note scene objects using the 3D positions of the object centres
0= {o}, oiz, o{}iT:1 € R¥JXT where J is the number of objects.
We use the head forward directions to represent head orientations
H= {hi}l.T:l € R¥*T where h; is a 3D unit vector.

Design of HOIGaze. We observe that human visual attention is
usually attracted to one hand at a specific time during hand-object
interactions. For example, in a scenario where a user first picks up a
cup on the table using their right hand and then picks up a jug with
their left hand, the user would pay attention to the right hand first

and then visually attend to the left hand (see Figure 1). The attended
hand is highly correlated with eye gaze while the unattended hand
has little correlation. Therefore, knowing which hand is the attended
one carries valuable information for estimating eye gaze. Based on
this observation, we propose a novel hierarchical framework that
combines an attended hand recogniser and an eye gaze estimator
(see Figure 2 for an overview of our method). The attended hand
recogniser uses a convolutional neural network and two spatio-
temporal graph convolutional networks to extract features from
head orientations, left and right hand gestures respectively, and
then concatenates these features to recognise attended hand via
a convolutional neural network. The gaze estimator first uses a
convolutional neural network to extract head features and a spatio-
temporal graph convolutional network to extract features from the
attended hand gestures and scene object positions, then employs
two cross-modal Transformers to fuse the head and hand-object
features, and finally uses a convolutional neural network to estimate
eye gaze from the fused features.

3.2 Attended Hand Recogniser

Head Orientation Feature Extraction. Considering the good per-
formance of 1D CNN for processing head movement data [Hu et al.
2021, 2022, 2020], we used three 1D CNN layers, each with 32 chan-
nels and a kernel size of three, to extract features from head orienta-
tions H € R3*T . The first two CNN layers were followed by a layer
normalisation (LN) and a Tanh activation while the third CNN layer
was followed by a Tanh activation. After the three CNN layers, we
obtained the head orientation features fj,, € R3XT.

Hand Gesture Feature Extraction. In light of the superior perfor-
mance of graph convolutional networks for processing body and
hand pose data [Hu et al. 2024b; Tang et al. 2024], we used two spatio-
temporal GCNs to extract features from the left and right hand
gestures respectively. Specifically, we modelled the hand gesture
data (LH € R¥>*WN)XT or Ry € R (N+3)XT) o5 fully connected
spatial and temporal graphs with their adjacency matrices mea-
suring the weights between each pair of nodes. The spatial graph
consists of N + 3 joints representing the hand joints, head, and
wrists, respectively, while the temporal graph contains T nodes cor-
responding to hand gesture at different time steps. We first mapped
the original hand gesture data into a latent feature space using a
spatial-temporal graph convolutional network (ST-GCN). The ST-
GCN first multiplied the data with a temporal adjacency matrix
AT € RTXT ¢ perform temporal convolution, then used a feature
matrix W € R3*® to map the original node features (3 dimensions)
into latent space (8 dimensions), and finally multiplied the data
with a spatial adjacency matrix AS € RIN¥3)X(N+3) {6 perform
spatial convolution. We copied the output of the ST-GCN along the
temporal dimension (R8* (N+3)XT _, R8X(N+3)x2T) 4 enhance the
features [Ma et al. 2022]. We further used a residual GCN module
that contains two GCN blocks to process the enhanced data. Each
GCN block consists of an ST-GCN, a layer normalisation, a Tanh
activation, and a dropout layer with a dropout rate of 0.3 to avoid
overfitting. The feature matrix of the ST-GCN used in the GCN
block was set to W € R8>8, ensuring that the input and output of
the GCN block had the same size. A residual connection was applied
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Fig. 2. HOIGaze combines an attended hand recogniser and an eye gaze estimator. The attended hand recogniser uses a 1D CNN and two ST-GCNss to extract
features from head orientations, left and right hand gestures, respectively, to recognise the attended hand. The gaze estimator uses an ST-GCN to extract
features from the attended hand and scene objects, and then fuses the head and hand-object features using cross-modal Transformers to estimate eye gaze.

for each GCN block to improve the network flow. We finally cut
the output of the residual GCN module in half along the temporal
dimension to obtain the hand gesture features (fj, € R&*(N+3)xT
and f,j, € R8><(N+3)><T).

Attended Hand Recognition. To recognise attended hand, we first
aggregated the hand gesture features along the spatial dimension
(RE*(N+3)xT _, R8(N+3)XT) e then concatenated the head ori-
entation, left and right hand gesture features along the spatial di-
mension and obtained f € RUI6(N+3)+32)XT We finally applied two
CNN layers, each with a kernel size of three, to process the con-
catenated features. The first CNN layer had 64 channels and was
followed by a layer normalisation and a Tanh activation function
while the second CNN layer had two channels and was followed
by a Softmax activation to generate the probabilities of the left and
right hands being the attended hand.

3.3 Eye Gaze Estimator

Head Orientation Feature Extraction. We employed the same CNN
module as used in the attended hand recogniser (subsection 3.2) to
obtain head orientation features f;, € R3*T.

Hand-Object Feature Extraction. Considering that human visual
attention is more likely to be attracted by the scene objects that are
close to the attended hand, we first calculated the average distance
between object centre and all the joints of the attended hand for
every scene object and then added the nearest scene object to the rep-
resentation of the attended hand AH = {he;, [w;, rw;, ah;, o;’h}iT:1 €
RIXIN+)XT where ah; refers to the attended hand joints and ol‘.’h
denotes the 3D positions of the nearest scene object. We further
used an ST-GCN and a residual GCN module that contains four GCN
blocks to extract features from the hand-object data. The ST-GCN
and GCN block had the same architecture as used in the attended
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hand recogniser (subsection 3.2) except that the spatial graph had
N +4 nodes rather than N +3. We finally aggregated the hand-object
features along the spatial dimension and obtained f,;, € RSN*4)xT

Head-Hand-Object Feature Fusion. In light of the good perfor-
mance of cross-modal transformers for fusing different features [Yan
et al. 2024; Zhang et al. 2022a], we used cross-modal transformers
to fuse the head and hand-object features by modelling correlations
between different time steps. To this end, we first applied a self-
attention block to enhance the head and hand-object features respec-
tively. Given input features X € RT*" where T refers to sequence
length and n denotes the feature dimension, the self-attention block
first calculated query feature vectors Q € RT*", key feature vectors
K € RT*"_and value feature vectors V € RT*" using Q = WeX,
K = WX, and V = W, X, where Wy, W, and W, are the linear
projections to generate Q, K, and V. The self-attention block then
enhanced the input features X using

T
Y:X+softmax(%)®V, (1)

\n

where Y € RT*" is the enhanced features and ® refers to matrix
multiplication. After the self-attention block, we further used a
cross-attention block to fuse the head and hand-object features.
Specifically, we used one modality to calculate Q and the other
modality to compute K and V and then applied Equation 1 to fuse
the two modalities. After the cross-modal transformers, we obtained
the enhanced head features f};e € R3%*T and hand-object features
fc;h c RS(N+4)><T.

Eye Gaze Estimation. To estimate eye gaze, we first concatenated
the head and hand-object features along the spatial dimension and
obtained f € REBWN+H)+32)XT \ye then used two 1D CNN layers,
each with a kernel size of three, to process the concatenated features.
The first CNN layer had 64 channels and was followed by a layer
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normalisation and a Tanh activation while the second CNN layer
used three channels and a Tanh activation to generate eye gaze. We
finally normalised the output to unit vectors to represent eye gaze
directions G = {g}}il e R3*T,

3.4 Loss Function

We first trained the attended hand recogniser and then used the
recognised attended hand to train the gaze estimator. Specifically,
we trained the recogniser using the cross entropy loss given its
good performance for classification task. To train the gaze estimator,
we proposed a novel eye-head coordination loss that increases the
weights of the training samples belonging to eye-head coordinated
movements:

4= { Jen* (9i — g% ifgi-hi > Cosen @)

(gi — G1)% otherwise

where g; - h; calculates the cosine similarity between eye gaze di-
rection and head orientation, Cos,}, is the threshold for eye-head
cosine similarity and is set to 0.8, and f,j, is the weighting factor
and is set to 4.0. The insight behind this loss function is that the
coordinated eye-head movements are much more pervasive than
the movements with little eye-head correlation [Hu et al. 2024a;
Nakashima et al. 2015; Sidenmark and Gellersen 2019a; Sitzmann
et al. 2018]. Therefore, increasing the weights of coordinated eye-
head training samples can improve the generalisation ability of the
gaze estimator.

4 EXPERIMENTS AND RESULTS
4.1 Datasets

To evaluate our method’s generalisation capability for different
scenarios, we tested our method on the HOT3D dataset [Banerjee
et al. 2024] for HOI setting as well as on the ADT dataset [Pan et al.
2023] for mixed setting that contains a mixture of free-viewing,
non-interactive, and HOI scenarios.

HOT3D Dataset. The HOT3D dataset contains human eye gaze,
head pose, wrist pose, gestures of 20 hand joints, and 3D scene
objects recorded at 30 Hz during various HOI activities in three
different environments including living room, kitchen, and office.
The original test set of HOT3D is not publicly available, so we only
used HOT3D’s original training set that contains 136 recordings
from nine subjects and each recording lasts for around two minutes.
To evaluate our method’s generalisation capability for different
users and environments, we respectively performed a cross-user
evaluation and a cross-scene evaluation. For cross-user evaluation,
we split the data into three user sets, i.e. {P1, P2, P3}, {P9, P10, P11},
and {P12, P14, P15}, trained on two sets and tested on the remaining
one, and repeated this procedure three times by testing for a different
user set. For cross-scene evaluation, we trained on two environments
and tested on the remaining one, and repeated this procedure three
times by testing for a different scene.

ADT Dataset. The ADT dataset collects human eye gaze, head
pose, wrist pose and 3D scene objects at 30 Hz during various indoor
activities including work, room decoration, and meal preparation, in
which free-viewing, non-interactive, and HOI scenarios are mixed
together. The dataset contains 34 sequences and each sequence

lasts for around two minutes. For evaluation on ADT, we followed
prior works [Hu et al. 2024a,b] to use 24 sequences for training and
the remaining 10 sequences for testing. The ADT dataset does not
record dynamic hand gestures but provides a static gesture of 15
hand joints, in which the 3D positions of the fingers are determined
only by the wrist pose while the relative finger pose doesn’t change
over time. For experiments on ADT, we used the static hand gesture
to train and test our method.

4.2 Evaluation Settings

Evaluation Metric. As is common in gaze estimation [Hu et al.
2021, 2020, 2024a], we used the mean angular error between the
estimated gaze directions and the ground truth as the metric to
evaluate different methods.

Baselines. We compared our method with the following state-of-
the-art gaze estimation methods designed for XR environments:

o Head Direction: Head Direction is frequently used as a proxy for
eye gaze in XR due to the strong correlation between eye and
head movements [Hu et al. 2020, 2019; Sitzmann et al. 2018].

e DGaze [Hu et al. 2020]: DGaze estimates eye gaze from the scene
content and head movements via convolutional neural networks.

e FixationNet [Hu et al. 2021]: FixationNet combines prior knowl-
edge of gaze distribution with head and scene features extracted
by convolutional neural networks to estimate eye gaze.

e PoseZ2gaze [Hu et al. 2024a]: Pose2gaze estimates eye gaze from
body movements using graph convolutional networks.

Time Horizon. We used 15 frames (corresponding to 500 ms) of
hand-head-object data as input to estimate the corresponding gaze
directions Gy:t+14 = {9, gr+1, ---» gr+14+ following common evalua-
tion settings for gaze estimation in XR [Hu et al. 2020, 2024a].

Implementation Details. We trained the baseline methods from
scratch using their default parameters. We trained our attended hand
recogniser using the AdamW optimiser with an initial learning rate
of 0.005 and a weight decay coefficient of 0.05. We decayed the
learning rate by 0.95 every epoch and trained the recogniser for 60
epochs using a batch size of 32. We trained our gaze estimator using
the Adam optimiser with an initial learning rate of 0.005 that was
decayed by 0.95 every epoch. We used a batch size of 32 to train
the gaze estimator for a total of 80 epochs. We implemented our
method with the PyTorch framework using a Linux machine with
one NVIDIA V100 GPU.

4.3 Gaze Estimation Results

Results on HOT3D (Cross-User). Table 1-HOT3D (Cross-User) sum-
marises the performances of different methods on the HOT3D
dataset for cross-user evaluation. We can see that our method con-
sistently outperforms the state of the art in terms of both average
performance and performances at different user sets. Specifically,
our method achieves an average improvement of 15.6% (9.37° vs.
11.10°) in mean angular error, an improvement of 13.7% (9.23° vs.
10.69°) on {P1, P2, P3}, 14.6% (9.16° vs. 10.73°) on {P9, P10, P11}, and
17.9% (9.69° vs. 11.80°) on {P12, P14, P15}. We further performed a
paired Wilcoxon signed-rank test to compare the mean angular er-
ror of our method with that of the state-of-the-art methods and the
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Table 1. Mean angular errors of different methods on the HOT3D and ADT datasets. Best results are in bold.

HOT3D (Cross-User) HOT3D (Cross-Scene) ADT

{P1, P2, P3} {P9, P10, P11} {P12, P14, P15} Average Room Kitchen Office Average Work Decoration Meal Average
Head Direction 23.24° 28.00° 17.85° 23.20°  23.69° 22.83° 23.16°  23.20°  22.88° 18.44° 25.23°  22.25°
DGaze [Hu et al. 2020] 12.17° 15.08° 14.87° 14.29° 13.37°  12.98° 11.39° 12.81° 8.84° 10.53° 10.77° 9.92°
FixationNet [Hu et al. 2021] 11.90° 14.60° 14.78° 14.00° 12.78°  12.84° 11.34° 12.53° 8.82° 10.50° 10.83° 9.92°
Pose2Gaze [Hu et al. 2024a] 10.69° 10.73° 11.80° 11.10° 9.79° 9.73° 9.96° 9.80° 8.25° 9.71° 10.43° 9.34°
Ours 9.23° 9.16° 9.69° 9.37° 8.55° 8.69° 8.69° 8.64° 7.81° 9.46° 9.41° 8.78°
Ours w/o attended hand 9.89° 11.24° 10.57° 10.67° 9.71° 9.32° 9.16° 9.43° 8.26° 9.97° 9.87° 9.25°
Ours w/o Transformers 9.60° 10.07° 10.24° 10.02° 8.87° 8.85° 9.17° 8.92° 8.03° 9.74° 9.96° 9.12°
Ours w/o eye-head coord. loss 9.83° 9.48° 9.70° 9.64° 8.79° 8.71° 8.84° 8.76° 7.87° 9.49° 9.71° 8.90°
Ours w/ GT attended hand 8.68° 8.82° 9.35° 8.98° 8.41° 8.25° 8.40° 8.34° 7.59° 9.18° 9.28° 8.57°

results validated that the differences between our method and prior
methods are statistically significant (p < 0.01). We also analysed
the cumulative distribution functions (CDFs) of different methods’
estimation errors and validated that our method achieves better
performance than other methods (see Figure 3). Figure 4 shows the
visualisation of the gaze estimation results from our method and
the state-of-the-art method Pose2Gaze [Hu et al. 2024a]. We can
see that our method achieves better performance than the state-of-
the-art method at different scenarios and different activities. More
visualisation results are provided in the supplementary video.

Results on HOT3D (Cross-Scene). Table 1-HOT3D (Cross-Scene)
shows the mean angular errors of different methods on HOT3D
for cross-scene evaluation. It can be seen that our method consis-
tently outperforms other methods in both average performance and
performances at different environments. Specifically, our method
achieves an average improvement of 11.8% (8.64° vs. 9.80°), an im-
provement of 12.7% (8.55° vs. 9.79°) at living room, 10.7% (8.69°
vs. 9.73°) at kitchen, and 12.8% (8.69° vs. 9.96°) at office. A paired
Wilcoxon signed-rank test was conducted and the results indicated
that the differences between our method and the state of the art
are statistically significant (p < 0.01). The results in Figure 3 fur-
ther show that our method outperforms other methods in terms of
estimation error distributions.

Results on ADT. The gaze estimation performances of different
methods on the ADT dataset are presented at Table 1-ADT. We can
see from the table that our method consistently outperforms prior
methods at different activities including work, room decoration, and
meal preparation, and achieves an average improvement of 6.0%
(8.78° vs. 9.34°). A paired Wilcoxon signed-rank test validated that
our improvement is statistically significant (p < 0.01). We further
demonstrate that our method achieves better performance than
other methods in estimation error distributions (see Figure 3).

4.4  Ablation Study

Attended Hand. To test the effectiveness of the recognised at-
tended hand, we re-trained our gaze estimator using both the left
and right hands rather than the attended hand. We can see from
Table 1 that our method significantly outperforms the ablated ver-
sion of not using attended hand (paired Wilcoxon signed-rank test,
p < 0.01). In addition, we also re-trained our gaze estimator using
the ground truth attended hand and the results in Table 1 further
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validate the usefulness of the attended hand. Furthermore, we anal-
ysed the error cases when the recognised attended hand is wrong
and found that our method can achieve superior or comparable per-
formance with the state of the art in these cases, demonstrating the
robustness of our method (see supplementary material for details).

Cross-Modal Transformer. We re-trained our gaze estimator with-
out using the cross-modal Transformers and the results in Table 1
demonstrate that cross-modal Transformers help improve the per-
formance significantly (paired Wilcoxon signed-rank test, p < 0.01).
We also validated that both the self-attention and cross-attention
blocks used in the cross-modal Transformers contribute to the over-
all performance (see supplementary material for details).

Eye-Head Coordination Loss. We replaced the eye-head coordi-
nation loss with a mean squared error (MSE) loss to re-train our
method. The results in Table 1 verify that the eye-head coordina-
tion loss can significantly improve our method’s gaze estimation
performance (paired Wilcoxon signed-rank test, p < 0.01).

GCN in Attended Hand Recogniser and Gaze Estimator. We re-
spectively removed the residual GCNs used in our attended hand
recogniser and gaze estimator to re-train our method. We can see
from the results in Table 2 that using residual GCNs achieves signif-
icantly better performances than not using them (paired Wilcoxon
signed-rank test, p < 0.01). We also changed the number of GCN lay-
ers and validated that using two residual GCNs in the attended hand
recogniser and four residual GCNs in the gaze estimator achieves
the best performance (see supplementary material for details).

Input Modality. We respectively tested different ablated versions
of our method that did not contain head orientations, head-wrist
positions, dynamic hand gestures (i.e., replace dynamic hand ges-
tures with static ones), and scene objects. We can see from Table 2
that our method consistently outperforms the ablated versions and
the results are statistically significant (paired Wilcoxon signed-rank
test, p < 0.01), thus underlining the effectiveness of each input
modality used in our method. We also changed the number of scene
objects and validated that using the nearest scene object achieves
the best performance (see supplementary material for details).

5 EYE-BASED ACTIVITY RECOGNITION

Activity recognition is important for many XR scenarios such as
low-latency predictive interfaces [David-John et al. 2021; Keshava
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Fig. 3. The cumulative distribution functions of different methods’ estimation errors on HOT3D (Cross-User), HOT3D (Cross-Scene), and ADT. The higher the
CDF curve, the better the performance. Our method achieves better performance than other methods in terms of estimation error distributions.

Table 2. Mean angular errors of our method’s different ablated versions on
the HOT3D and ADT datasets. Best results are in bold.

Table 3. Eye-based activity recognition accuracies of different methods on
ADT. Best results are in bold while the second best are underlined.

HOT3D-User HOT3D-Scene ADT
w/o recogniser GCN 9.75° 8.78° 8.99°
w/o estimator GCN 9.87° 9.13° 9.20°
w/o head orientations 10.53° 9.29° 9.42°
w/o head-wrist positions 12.82° 11.47° 9.57°
w/o hand gestures 9.63° 8.74° -
w/0 scene objects 10.34° 9.19° 9.03°
Ours 9.37° 8.64° 8.78°

et al. 2020], adaptive virtual environment design [Hadnett-Hunter
et al. 2019], or human-aware intelligent systems [Vortmann and
Putze 2020]. It is well-known that human eye gaze can be directly
used to recognise user activities [Bulling et al. 2010; Coutrot et al.
2018; Hu et al. 2022]. Therefore, eye-based activity recognition is a
particularly relevant sample downstream task to further evaluate
the quality of the estimated eye gaze.

Dataset. We tested on the ADT dataset given that it provides
activity labels for the recorded sequences. We used the same training
and test sets as described in subsection 4.1.

Activity Recognition Method. We used EHTask [Hu et al. 2022]
— the state-of-the-art eye-based activity recogniser to evaluate the
estimated eye gaze. EHTask employs a 1D CNN and a bidirectional
gated recurrent unit (GRU) to extract eye gaze features and then uses
fully-connected layers to recognise activities from the eye features.

Procedure. We trained EHTask using its default parameters to
recognise three activities, i.e. work, room decoration, and meal prepa-
ration, from the ground truth eye gaze. At test time, we used the
eye gaze generated from different methods as input to EHTask to
evaluate their effectiveness on activity recognition.

Results. Table 3 shows the activity recognition accuracies of using
the ground truth eye gaze and the eye gaze generated from different
methods on the ADT dataset. We can see that our method achieves
better recognition performance than prior methods (71.8% vs. 68.7%)

GT Ours Pose2Gaze FixationNet DGaze Head Direction Chance
72.9% 71.8% 68.7% 66.6% 66.0% 47.1% 33.3%

and the result is statistically significant (paired Wilcoxon signed-
rank test, p < 0.01). We also find that the activity recognition
performance of using our estimated eye gaze is comparable with that
of using ground truth eye gaze (71.8% vs. 72.9%). The above results
demonstrate the effectiveness of using our method to estimate eye
gaze for XR-related downstream tasks such as activity recognition.

6 DISCUSSION

Significance of Our Method. Our method outperforms state-of-the-
art methods by an average improvement of 15.6% for HOI setting and
6.0% for mixed setting (Table 1), validating the overall superiority of
our model architecture. In addition, our method achieves superior
performances than prior methods for both cross-user and cross-
scene evaluations (Table 1), demonstrating that our method has
strong generalisation capabilities for different users and different XR
environments. Furthermore, the results from the sample application
of eye-based activity recognition confirm that our method can be
more effective in real applications (Table 3).

Usability of Our Method. Our method exploits information about
hand gestures and scene objects to estimate eye gaze. Hand gesture
information is readily available in many XR devices such as HTC
Vive Focus 3 and Meta Quest 3 while scene object information can
be directly obtained from the XR systems or easily accessed using
object tracking methods [Hale and Leuze 2021]. Our method has
significant potential to be integrated into such XR devices to enable
numerous eye gaze-based applications including gaze-contingent
rendering [Patney et al. 2016], gaze-based interaction [Duchowski
2018; Sidenmark and Gellersen 2019b], or virtual content design
and optimisation [Alghofaili et al. 2019]. In addition, even if dy-
namic hand gestures are not available, our method using static hand
gestures still outperforms prior methods by a large margin, achiev-
ing an average improvement of 13.2% (9.63° vs. 11.10°) on HOT3D
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Fig. 4. Visualisation of the gaze estimation results from our method and the state-of-the-art method Pose2Gaze [Hu et al. 2024a] on the HOT3D dataset.
The green arrow represents the ground truth eye gaze, the red arrow denotes our method, the blue arrow refers to Pose2Gaze. Our method exhibits higher
estimation accuracy than the state-of-the-art method at different scenarios and different activities.

(Cross-User), 10.8% (8.74° vs. 9.80°) on HOT3D (Cross-Scene), and
6.0% (8.78° vs. 9.34°) on ADT (Table 1 and Table 2). These results
further demonstrate the usability of our method in real applications.

Eye-Hand-Head Coordination. Our key insight is that the eye,
hand, and head movements are closely coordinated during HOIs
and this coordination can be exploited to identify samples that are
most useful for gaze estimator training — as such, effectively denois-
ing the training data. Experimental results showed that using the
attended hand rather than both hands and increasing the weights
of coordinated eye-head training samples can significantly improve
the gaze estimation performance (Table 1), validating the effective-
ness of our insight. In addition, we found that the ratio of the right
hand being the attended hand is 54.3% on HOT3D and 47.1% on
ADT, demonstrating that there is no inherent bias toward the right
hand as the attended hand.
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Limitations and Future Work. Despite these advances, we identi-
fied several limitations that we plan to address in future work. First,
the HOT3D and ADT datasets only contain interactions with real
physical objects, thus unfortunately limiting the generalisability of
our evaluation. In future work, we are looking forward to assessing
our method on interactions with both real and virtual objects. In
addtion, we exclude image/texture features from our pipeline be-
cause such features have been proven to be less effective than head
movements or object positions for gaze estimation [Hu et al. 2021,
2020, 2019] and are computationally costly for real XR applications.
Exploring how to effectively integrate such features into our method
to further boost its performance is an interesting avenue of future
work. Finally, our method has the potential to improve the overall
accuracy of eye image-based gaze estimators [Zhang et al. 2017] by
providing additional hand-head-object priors.
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7 CONCLUSION

In this work, we explored the challenging task of estimating hu-
man eye gaze during hand-object interactions in extended reality.
A key insight of our work is that the coordination of eye, hand, and
head movements during HOIs contains rich information that can
be leveraged to improve gaze estimator training. Specifically, we
proposed a learning-based method that features a novel hierarchical
framework, a new gaze estimator that uses CNN, GCN, and cross-
modal Transformers to extract features from head movements, hand
gestures, and scene objects, and a novel eye-head coordination loss.
Through extensive experiments on two public datasets, we showed
that our method consistently outperforms several state-of-the-art
methods by a large margin. We also validated the effectiveness of
our method for the sample application of eye-based activity recogni-
tion. As such, our work reveals the significant information content
available in eye-hand-head coordination for gaze estimation during
HOIs and informs future work on this promising research direction.
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